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Abstract

The decay of the overlap between a wave packet evolved with a Hamiltonian H and the same
state evolved with H+� serves as a measure of the decoherence time ��. Recent experimental
and analytical evidence on classically chaotic systems suggest that, under certain conditions, ��
depends on H but not on �. By solving numerically a Hamiltonian model we �nd evidence of
that property provided that the system shows a Wigner–Dyson spectrum (which de�nes quantum
chaos) and the perturbation exceeds a crytical value de�ned by the parametric correlations of
the spectra. c© 2000 Elsevier Science B.V. All rights reserved.
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The existence of chaos in classical mechanics is manifested in the evolution of
a state as an extreme sensitivity to the initial conditions. Quantum mechanics, on
the contrary, does not show this sensitivity. This has raised several problems in a
dynamical de�nition of quantum chaos. In particular, numerical [1] and experimental
[2] studies show that time reversal can be achieved with great accuracy. Therefore,
the search for a quantum de�nition of chaos, lead to investigate the spectral properties
[3] of quantum systems whose classical equivalent is chaotic. Quantum chaos appears
as the regime in which the properties of the eigenstates follow the predictions of the
random matrix theory (RMT). In particular, the normalized spacing between energy
levels s = (�i+1 − �i)=��, with �� the mean level spacing, should have a probability
distribution given by the Wigner–Dyson distribution POWD(s) = (�s=2) exp(−�s2=4) for
an orthogonal ensemble and PUWD(s)=(32s

2=�2) exp(−4s2=�) for the unitary ensemble.
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An in�nite set of interacting spins is an example of a many-body system which is
chaotic in its classical version (lattice gas) and hence it is expected to present the
quantum signatures of chaos in the spectrum. The dynamics of this particular system
can be studied by nuclear magnetic resonance (NMR). Surprisingly, the “di�usive”
dynamics of a local excitation exp[ − iHtR]|0¿ can be reversed [4], generating a
Polarization Echo M at time 2tR. In this case, H is the many-body Hamiltonian of
a network of spins with dipolar interaction. To accomplish this echo, the transforma-
tion H → −(H + �) at time tR is performed with standard NMR techniques [4].
This transformation is possible due to the anisotropic nature of the dipolar inter-
action. The perturbation � is a non-invertible component of the Hamiltonian. In some
systems, the only contribution to � is proportional to the inverse of the radio frequency
power and hence can be made arbitrarily small. In a general case the polarization echo
(i.e., magnitude of the excitation recovered at time 2tR) can then be written exactly as

M (t) = |〈0|exp[i(H+ �)t=˝]exp[− iHt=˝]|0〉|2 ; (1)

where |0〉 is the initial wave function, H the unperturbed Hamiltonian and � the
perturbation which can be associated with an environmental disturbance. Then the
magnitude of experimental interest is the overlap between the same initial wave function
evolved with the two di�erent Hamiltonians, H and (H+�). We should note that the
second evolution can be seen as an “imperfect time reversal” of the wave function!
Consistently, more than 10 years ago Peres [5] proposed that dynamical signatures of
quantum chaos should be searched on the sensitivity to perturbations in the Hamiltonian.
Actually, for a classically chaotic system a perturbation in the initial conditions is
equivalent to a perturbation in the Hamiltonian. The experiments show that M decays
rapidly with tR with a Gaussian law [6] indicating a progressive failure in rebuilding
the original state. We can de�ne a decoherence time �� from this failure, as the width
of the Gaussian. This is found [7] to be roughly independent of � and it extrapolates
to a �nite value when � → 0. Using a semiclassical one-body analytical approach in
classically chaotic systems characterized by a Lyapunov exponent �, Pastawski and
Jalabert [8] have shown that there is a regime where an exponential attenuation of
M is independent of the perturbation � with 1=�� = �. This non-perturbative result is
valid for long times and as long as � does not change the Hamiltonian nature. Our
general aim is to �nd numerical evidence of this regime where M (t) is independent of
� considering the simplest Hamiltonian that could model spin di�usion.
In this work, we study one-body Hamiltonians in the quasi-1D system with N states

which we called the Stars necklace model. More speci�cally, we use a tight-binding
model of a ring-shaped lattice with on-site disorder, hopping matrix elements V , and a
magnetic ux � perpendicular to the plane of the ring (see the inset of Fig. 1). Let us
discuss the general features through one representative class, each star has 20 sites and
there are L=35 beads in the necklace which makes N =700. In our case, perturbation
acts only between two star beads: �(��)=V exp[i2��=�0](exp[i2���=�0]−1)|1〉〈L|+
c:c: Bra and ket states contain orbitals in the star. The localized wave packet with
energy 〈0|H|0〉 ' 0 moves along the string and contains only 3N=4 states. Anderson
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Fig. 1. Probability distribution of the normalized energy level spacing s for the system studied. The black
line is the Wigner–Dyson distribution for the unitary ensemble, which is in reasonable agreement with the
numerical data. In the inset is shown the schematics of the Hamiltonian model, where the system has the
shape of a ring, and the in-layer sites are fully connected.

Fig. 2. Plot of the decoherence time of the system according to 2 as a function of ��. The curve is for a
system with 20 sites per layer and a diameter of 35 sites, the amount of disorder is W =3. The inset shows
the dependence of the asymptotic value M∞ with ��. The straight line corresponds to 4=3N . As can be
seen, M∞ reaches this value when ��¿��c.

disorder is W = 3V which gives a �imp ' 3˝=V and � = 0:1�0. We verify that for
�� = 0 the dynamics of the system follows a di�usive law, and that for all �� the
statistics of the eigenvalues correspond to those predicted by RMT (see Fig. 1). We
interpret these facts as a signature of chaos. However, when studying the parametric
correlations of the energy spectrum [9] as a function of �� the correlation function is
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Fig. 3. This �gure shows that while the wave functions evolved with H and H + � have very similar
probability densities, the overlap between them decays rapidly to zero due to interference e�ects. In thick
solid line, pro�le of the initial wave function and overlap of the two initial wave functions as a function of the
layer, respectively. In thin solid lines, pro�le of the wave functions evolved with two di�erent Hamiltonians
as a function of the layer. Thick dotted line, overlap between the two evolved wave functions. The system
has 15 sites per layer and a diameter of 35 sites, W = 3, t = 2˝=V , and �� = 0:1 �0. The sum over layers
for this overlap is equal to 1:4 10−2.

de�nite positive. A critical value ��c ∼ 0:1 �0 can be extrapolated from the strong
decay.
For small t the decay of M (t) is Gaussian like with a characteristic time scaling with

� exactly as could be predicted by a perturbation theory [5]. After a certain time of the
order of the collision time �imp it becomes a stretched exponential with a characteristic
time �� independent of �,

M (t) ∼ exp(−t=��)� +M∞ (2)

with � ∼ 0:87 and �� ∼ 18˝=V (see Fig. 2). The constant M∞ arises from �nite size
e�ects. Nonetheless, if the perturbation does not exceed the critical threshold consistent
with that of the correlation function, M∞ increases with decreasing �. On the other
hand, if the perturbation is large ��¿��c; one gets M∞ ∼ 1=N (see the inset of
Fig. 2). The fact that �c goes to zero when N goes to in�nity [9], together with the
results of Fig. 2 for a �nite system, could be a signature of the existence of a nontrivial
thermodynamic limit lim�→0 limN→∞M∞ = 0 di�erent from the non-thermodynamic
one limN→∞ lim�→0M∞=1. Preliminary results on the variation of �� with the amount
of disorder and system size are consistent with this hypothesis.
In order to present in a graphical way the physical phenomena of decoherence,

we calculated the weight of the wave functions that evolved with the two di�erent
Hamiltonians and the overlap between them as a function of the layer index. The results
are shown in Fig. 3. It can be seen that the evolution of the probabilities described
by the perturbed and unperturbed Hamiltonians are not signi�cantly di�erent, i.e., they
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would give the same coarse-grained values. However, the perturbation causes spatial
uctuations in the phases which produce an integral overlap that decays to zero.
To sum up, our numerical calculations of the polarization echo M in a simple chaotic

model indicate that there is a regime of the perturbation where the decoherence time
does not depend on the perturbation. This basic feature is also found in experiments
[7] and in other theoretical models. Some di�erences in the details remain, such as the
value of the exponent �. According to preliminary numerical evidence � could be re-
lated to the particular topology [10] induced by the matrix elements in the Hamiltonian
model. Di�erent systems such as disordered cylinders, maximally connected Hamiltoni-
ans (RMT) and chaotic stadiums should be studied in order to characterize the details
of the dependence of �� on H.
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